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Abelian varieties

The inverse Galois problem

Let G be a finite group. Does there exist a Galois extension K/Q such
that Gal(K/Q ) ∼= G ?

Aim of this talk

Show that it is possible to explicitly realise for all∗ g ∈ Z≥1, the group
GSp2g (F`), simultaneously for all odd primes `, using the `-torsion of the
Jacobian of the same hyperelliptic curve.
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Let Q be an algebraic closure of Q and let GQ = Gal(Q /Q ).

Let A be a principally polarized abelian variety over Q of dimension g .

Let ` be a prime and A[`] the `-torsion subgroup:

A[`] := {P ∈ A(Q ) | [`]P = 0} ∼= (Z /`Z )2g .

A[`] is a 2g -dimensional F`-vector space, as well as a GQ -module.
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The polarization induces a symplectic pairing, the mod ` Weil pairing on
A[`], which is a bilinear, alternating, non-degenerate pairing:

〈 , 〉 : A[`]× A[`]→ µ`

that is Galois invariant: ∀σ ∈ GQ , ∀v ,w ∈ A[`]

〈σv , σw〉 = χ(σ)〈v ,w〉,

where χ : GQ → F×
` is the mod ` cyclotomic character.

(A[`], 〈 , 〉) is a symplectic F`-vector space of dimension 2g . This gives a
representation

ρA,` : GQ → GSp(A[`], 〈 , 〉) ∼= GSp2g (F`).
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Theorem (Serre)

Let A/Q be a principally polarized abelian variety of dimension g.
Assume that g = 2, 6 or g is odd and, furthermore, assume that
EndQ (A) = Z . Then there exists a bound BA such that for all primes
` > BA the representation ρA,` is surjective.

Open question

Is it possble to have a uniform bound Bg depending only on g?



The inverse Galois problem for symplectic groups

Abelian varieties

Genus 1

The Galois representation attached to the `-torsion of the elliptic curve

y 2 + y = x3 − x (37a1)

is surjective for all prime `. This gives a realization GL2(F`) as Galois
group for all prime `.

Genus 2 (Dieulefait)

Let C be the genus 2 hyperelliptic curve given by

y 2 = x5 − x + 1 (45904.d .734464.1)

and let J denotes its Jacobian. This gives a realization GSp4(F`) as
Galois group for all odd prime `.
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Genus 3 (A., Lemos and Siksek)

Let C/Q be the following genus 3 hyperelliptic curve,

C : y 2 + (x4 + x3 + x + 1)y = x6 + x5.

and write J for its Jacobian. Then

ρJ,`(GQ ) = GSp6(F`)

for all odd prime `. Moreover, ρJ,2(GQ ) ∼= S5 × C2 ⊆ S8.

Higher genera

What about g ≥ 4?

Notation: let C/Q : y 2 = f (x) be an hyperelliptic curve with
f (x) ∈ Z [x ] monic, squarefree and of degree 2g + 2. Let J = Jac(C ).
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Main result

Theorem (A., Dokchitser V.)

Let g be a positive integer such that 2g + 2 satifies hypothesis (2G + ε).
Then there exist an explicit N ∈ Z and an explicit f0(x) ∈ Z [x ] monic of
degree 2g + 2 such that if

1 f (x) ≡ f0(x) mod N, and

2 f (x) mod p has no roots of multiplicity ≥ 2 for all primes p - N,

then Gal(Q (J[`])/Q ) ∼=

{
GSp2g (F`) for all primes ` 6= 2

S2g+2 for ` = 2.
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Double Goldbach conjecture

Let g ∈ Z≥0.

Hypothesis (2G + ε): Double Goldbach conjecture

There exist primes q1, q2, q3, q4, q5 such that:
2g + 2 = q1 + q2 = q4 + q5, 2g + 2 > q3 > q5 > q2 ≥ q1 > q4.

Hypothesis (2G + ε) has been verified for g up to 107: the only
exceptions are 0, 1, 2, 3, 4, 5, 7 and 13.
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Remarks

If (2G + ε) does not hold, it is still possible to obtain the same
conclusion as in the theorem except for a finite list of primes `:

Genus primes excluded
2 3, 5
3 3, 5, 7
4 5, 7
5 5, 7, 11
7 5, 11, 13
13 11, 17, 23

Recent preprint of Landesman, Swaminathan, Tao, Xu for g = 2, 3.

Generalization to higher degree number fields (work in progress).

It is possible to prove that for each g which satisfies (2G + ε) there
exists a positive density of f (x) ∈ Z [x ] as in the previous theorem.
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Example: g = 6

f0(x) = x14+ 1122976550518058592759939074 x13+ 10247323490706358348644352 x12+
+ 1120184609916242124087443456 x11+ 186398290364786000921886720 x10+
+ 1685990245699349559300014080 x9+ 387529952672653585935499264 x8+
+ 1422826957983635547417870336 x7+ 585983998625429997308035072 x6+
+ 607434202225985243206107136 x5+ 1820210247550502007557029888 x4+
+ 533014336994715937945092096 x3+ 595803405154942945879752704 x2+
+ 1276845913825955586899050496 x+ 1323672381818030813822668800.

N = p2
t · p′2t · plin · pirr · p2

2 · p′22 · p3
3 · p′33 · 22g+2 ·

∏
3≤p≤g

p2 =

=72 · 112 · 23 · 29 · 192 · 412 · 373 · 173 · 214 · 32 · 52 = 2201590757511816436065484800

For all f (x) ∈ Z [x ] such that

1 f (x) ≡ f0(x) mod N, and

2 C is semistable at all primes p - N (e.g. f = f0).

Gal(Q (J[`])/Q ) ∼=

{
GSp12(F`) for all primes ` 6= 2

S14 for ` = 2.
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Transvection

Definition

Let (V , 〈 , 〉) be a finite-dimensional symplectic vector space over F`. A
transvection is an element T ∈ GSp(V , 〈 , 〉) which fixes a hyperplane
H ⊂ V .

When does ρJ,`(GQ ) contain a transvection?

Let p 6= ` be an odd prime such that

p does not divide the leading coefficient of f

f modulo p has one root in Fp having multiplicity precisely 2, with
all other roots simple

then ρJ,`(GQ ) contains a transvection (Grothendieck, Hall).
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Classification of subgroups of GSp2g(F`) with a
transvection

Theorem (Arias-de-Reyna, Dieulefait and Wiese; Hall)

Let ` ≥ 5 be a prime and let V a symplectic F`-vector space of
dimension 2g. Let G be a subgroup of GSp(V ) such that:

(i) G contains a transvection;

(ii) V is an F` irreducible G -module;

(iii) V is a primitive G -module.

Then G contains Sp(V ). The same holds true for ` = 3, provided that
V ⊗ F3 is an irreducible and primitive G-module.
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Definition

Let t ∈ Z>0. We say that

f (x) =
m∑
i=0

aix
i ∈ Z p[x ]

is a t-Eisenstein polynomial of degree m ∈ Z>0 if

f (x) is monic,

ordp(ai ) ≥ t for all i 6= m,

ordp(a0) = t.
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Definition

Let q be prime number and let t ∈ Z>0. Let f (x) ∈ Z p[x ] be a monic
squarefree polynomial.
Then f (x) is of type t − {q} if

f (x) = h(x) g(x − α) over Z p[x ], where

α ∈ Z p

g(x) ∈ Z p[x ] is a t-Eisenstein polynomial of degree q,

the reduction of h, denoted by h(x), is separable and h(α) 6= 0.



The inverse Galois problem for symplectic groups

Type t − {q1, . . . , qk}

Definition

Let q1, q2 be prime numbers and let t ∈ Z>0. Let f (x) ∈ Z p[x ] be a
monic squarefree polynomial.
Then f (x) is of type t − {q1, q2} if

f (x) = h(x) g1(x − α1) g2(x − α2) over Z p[x ], where

for some α1, α2 ∈ Z p with α1 6= α2 (reduction)

g1(x) ∈ Z p[x ] is a t-Eisenstein polynomial of degree q1,

g2(x) ∈ Z p[x ] is a t-Eisenstein polynomial of degree q2,

h(x) is separable and such that h(αi ) 6= 0 for i = 1, 2.
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Definition

Let f (x) ∈ Z [x ] be a monic squarefree polynomial. We say that f is of
type t − {q1, . . ., qk} at a prime p if f (x) ∈ Z p[x ] is of type
t − {q1, . . ., qk}.

The notion of type can be expressed in terms of congruence conditions.
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Back to the example

f0(x) = x14+ 1122976550518058592759939074 x13+ 10247323490706358348644352 x12+
+ 1120184609916242124087443456 x11+ 186398290364786000921886720 x10+
+ 1685990245699349559300014080 x9+ 387529952672653585935499264 x8+
+ 1422826957983635547417870336 x7+ 585983998625429997308035072 x6+
+ 607434202225985243206107136 x5+ 1820210247550502007557029888 x4+
+ 533014336994715937945092096 x3+ 595803405154942945879752704 x2+
+ 1276845913825955586899050496 x+ 1323672381818030813822668800.

f0 ≡ (x12 + 2x8 + · · ·+ 3) · (x2 − 7) mod 72 type 1− {2} at 7

f0 ≡ (x12 + x8 + · · ·+ 2) · (x2 − 11) mod 112 type 1− {2} at 11

f0 ≡ (x7 − 19) · ((x − 1)7 − 19) mod 193 type 1− {7, 7} at 19

f0 ≡ (x11 − 41) · ((x − 1)3 − 41) mod 413 type 1− {3, 11} at 41

f0 ≡ (x13 − 372) · (x + 1) mod 373 type 2− {13} at 37

f0 ≡ (x11 − 172) · (x3 + x + 14) mod 173 type 2− {11} at 17

Transvection: if f (x) has type 1− {2} at some prime p 6= ` then the
local Galois group at p contains a transvection in its action on J[`].
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Overview of the proof

Main Idea: study inertia

Study the Galois representations H1
ét(C ,Q `) and J[`] as representations

of local Galois groups.

` 6= p: we use the method of clusters, recently introduced by
Dokchitser T., Dokchitser V., Maistret and Morgan.

` = p: theory of fundamental characters.

If f (x) is of type t − {q1, . . ., qk} at a prime p then we have control over
the image of the inertia subgroup at p.
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Theorem (Arias-de-Reyna, Dieulefait and Wiese; Hall)

Let ` ≥ 5 be a prime and let V a symplectic F`-vector space of
dimension 2g. Let G be a subgroup of GSp(V ) such that:

(i) G contains a transvection; ⇐= type 1− {2}
(ii) V is an F` irreducible G -module; ⇐= types and (2G + ε)

(iii) V is a primitive G -module. ⇐= quasi-unramified, p-admissibility

Then G contains Sp(V ). The same holds true for ` = 3, provided that
V ⊗ F3 is an irreducible and primitive G-module.
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Irreducibility

We cannot always guarantee that H1
ét(C ,Q `) and J[`] are locally

irreducible. Use the notion of type:

Lemma

Let p2 be an odd prime. Suppose that f ∈ Z p2 [x ] has type 1− {q1, q2}
where q1, q2 are odd primes, coprime to p2, and such that
2g + 2 = q1 + q2. Suppose that p2 is a primitive root modulo q1 and
modulo q2. Then for every prime ` 6= p2, q1, q2 we have

(J[`]⊗F`
F`)ss = M1 ⊕M2

where Mi are (qi − 1)-dimensional irreducible GQ -subrepresentations.

We prove irreducibility, away from a finite list of primes, requiring that
f (x) has type 2− {q3} at an odd prime p3, that is a primitive root
modulo q3. In order to conclude for all primes we require “double
Goldbach”.
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